@

TRISUL

TRISUL NETWORK ANALYTICS

http://trisul.org

LUA API| Reference

Documentation
version 4.0

Copyright (c) Unleash Networks 2014

1/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/

Table of Contents

LI 10T [e (o o 1P 3
LI L Y =T T o R RRSR 3
1.2 Installing Lua scripts and error handlingoooo oo 3

1.2.1 Loading and error NandliNg........ccueeieeeeieie et enannes 3
1.3 Basic structure of @ LUA SCHPT...cooe i 4
LR 1 T L0 0SS 5
1.5 Top level functions onload() and oNUNIOAA() ...eeevieeeereiiiiiiie e 5
1.6 THE ID BIOCK....ciiiie ittt e e e e e e et e e e e e e e e s s nnsnaeeeeeeaeeeannnnnnnees 5

P20 C] (0] oY= | < PP PUPPRPRRRR 6

P2 T I I o o] 0 =1 oo PR 6

2.1.2 TK MELNOAS. ... e e et e e e e e e e e e e e e e eeeeeaeas 7

LI 2= T 1/ o= PP PPUPPPPRRRRR 7

P2 G T U1 0 =3 1 o T S 8

P2 I e (=T o 18 e o =T PP RUUOPPPPPPPPPRP 9

P2 R T N (=2 PP 10

P2 L - o UPPPPPRRR 11

K@ o] =] J TSP PP PPPPPPPPPPR 12

I I B = o o = T PP PUPPP PP 12

R 2 I - 1Y P EEPPPR S UPPPPRPPPIN 14

BL1.8 PACKEL. ..t a e e e e e 15

R T | = 15

T8 R TN o | 0 PP PPRRRRRRRP 16

TR T S SUSSRRRR 17

I R TP 18

T 1ol 1 0] 1Y/ 01 TSP PPP TP 19

T 07010 o] (=T o C T o TH o TSSO P PP PPPPPPPPPPRR 20

i I B =T o] L= oTo T 1 (=T o | (01U o J SRR SURRRR 20

The countergroup > CONrol table.........oeiiiiiiiii e 21

The countergroup > meters table.........ooeeiiiiii 21

The countergroup > keyinfo table..............oeiiiiiiii e 22

0 0 1 = SRS STPSPPPPRPIN 22

4.2 SIMPIE COUNTET ...ttt e e e e e e abe e e e e e e e e e e e e e eaaans 23

4.2.1 Table SIMPIECOUNTET.......ccoiiiie e 23

4.2.2 The simplecounter > onpacket fUNCLION...........oooiiiiiiiiiie e 24

The layer PAramMELET e a e e e e 24

The eNgiNe PAramMETEr.. ... s 25

G I [0 1Y |V (o 1 o PPN 26

4.3.1 Table flOWMONITOr........coe e 26

List of supported flow attribues. ... 27

4.3.2 Function flowmonitor > onflowattribute. ..o 28
2/27

Trisul Network Analytics LUA API Ref v4.0

1 Introduction

1.1 LUA version

Trisul embeds LuaJIT which is compatible with Lua version 5.1.

1.2 Installing Lua scripts and error handling
LUA scripts are contained a single file, say myplugin. lua.

« To install the script just place it in the /usr/local/lib/trisul/plugins/lua
directory. They are automatically picked up when you restart Trisul.

« To uninstall, remove them from the above directory.

* You need to restart Trisul to make it load new scripts.

1.2.1 Loading and error handling

All . Lua files in the plugins/lua directory will be inspected for capabilities by the Trisul
runtime. If there are any syntax errors, the scripts will simply fail to load with no output on the
command line. The errors can be found in the main Trisul log file instead. The log files are
located in /usr/local/var/log/trisul/ns*. log

Some techniques

1. All messages will contain the filename of your Lua script, so you can grep
myfile. lua

2. You can also try loading it outside of Trisul via a Lua command line to rule out syntax
errors

A typical error message looks like this

grep re2http.lua /usr/local/var/log/trisul/ns*.logSat Apr 5 16:27:49
2014.048575 ERROR [re2http.lua]Unable to load lua file, see next message

Sat Apr 5 16:27:49 2014.048588 ERROR [re2http.lua]LUA file error :
plugins/lua/re2http.lua:51: ')' expected (to close '(' at line 50) near 'for'

3/27
Trisul Network Analytics LUA API Ref v4.0

1.3 Basic structure of a LUA script

A LUA script follows the following structure

TrisulPlugin = {

onload = function()

end

onunload = function()

end
-- plugin type
-- here we select simplecounter in this example

simplecounter = {

You may also use the other LUA notations such as the following.

TrisulPlugin.onload = function()

end..

4/27
Trisul Network Analytics LUA API Ref v4.0

1.4 On GUIDs

GUIDs are used throughout the scripting interface. A GUID is just a globally unique ID. To
avoid namespace issues Trisul uses a GUID to identify each counter group, protocol, and
many other things. For more on GUIDs and for a list of common GUIDs refer to Common

GUIDs

1.5 Top level functions onload() and onunload()

These methods, if present, are called for every plugin.

onload optional |Called when the script is loaded into Trisul. You may do any
initialization such as reading datafiles here

onunload |optional |Called when the script is unloaded. Free up resources

One important point is your script may be loaded and unloaded several times by Trisul. Also
more than one instance of your script may be loaded and active. Do not make any
assumptions about the singleton nature of your scripts.

1.6 The ID Block

Every plugin must have an ID block with the following fields

name string Mandatory: A short name for the script
description string Optional (default = none) : More info about the
plugin
author string Optional (default = Unleash) : Who wrote the script
version_major number Optional (default = 1) : A major version number
version_minor number Optional (default = 0): A minor version number
5/27

Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/ref/guid.html
http://trisul.org/docs/ref/guid.html

o Globals T

The global table T can be accessed from anywhere. The following methods are available on
T.

T.host Host methods that can be called from LUA

TK Constants

T.utils Utility methods

T.debugger Drops you into an interactive debugger when called
T.re2 A fast and powerful regex engine (Google RE2)

T.ac A minimal but fast Aho-Corasick multi pattern matcher

2.1.1 T.host methods

Interact with the Trisul environment.

Name In Out Description
log level, Log a message to the Trisul log file, usually
msg located in /usr/local/var/log/trisul
Usage:T.host:log(T.K.loglevel.INFO, "HELLO ")
get_homenets Table, Array of Get home networks defined by Trisul.
[IP, Netmask]
is_homenet 32-bit bool Is the 32-bit IPv4 address within the home
network?
get_configpath string Configuration directory
get_datapath string Data directory
createkey cgguid, Create a userlabel for a given key. Use this
key, label to pre-load human labels for keys
prepare_config Prepare a configuration file for your plugin
if needed
broadcast Broadcast a state update to other plugins.
6/27

Trisul Network Analytics LUA API Ref v4.0

2.1.2
T.K methods

Pre-defined constants to use with other Lua functions.

loglevel |Loglevels |EMERG,FATAL,ALERT,CRIT,ERROR,WARN,NOTICE,INFO,DEBU
G
Usage :print(T.K.logleve ERROR) => 4

vartypes |Meter types | COUNTER, RATE_COUNTER,GAUGE, RUNNING_COUNTER

T.K.vartype

Constants : Types of counters.

COUNTER Increment a counter that resets to zero at start of
every time bucket

RATE_COUNTER Equal to COUNTER/Bucket Size in seconds

GAUGE Instantaneous values

RUNNING_COUNTER Increment or decrement a counter, does not reset
every time bucket

7/27
Trisul Network Analytics LUA API Ref v4.0

2.1.3 T.util methods

Some utility functions.

ntop 32-bit number string | Convert a 32 bit number to IPv4 address
string
pton string number|Convert an IPv4 address string to a number
bor number,number number | bitwise OR of two numbers
band number,number number | Bitwise AND of two numbers
testbit32 | number,number(bit bool Test bit position of a 32 bit
position) number.LSB=0,MSB=31
T.util.testbit32(num,8)@ returns true if bit 8
=1
bitval32 |number, number (start number | Get value of continous bits.
bit), number (width) T.util.bitval32(num,20,4) returns the numeric
value of bits 20,19,18,17

bit32 in Lua 5.2 note The bit utilities have been provided because we are using LuaJIT
which does not support Lua5.2’s bit32 library.

Trisul Network Analytics LUA API Ref v4.0

8/27

2.1.4 T.debugger

T.debugger is an interactive debugger that you can call. When called, this method drops you
into an interactive LUA shell where you may run one line commands. This lets you play with
the objects, strings, protocol bits to help you build your script.

A sample session

Running this code

onpacket = function(engine,layer)

local buff = layer:rawbytes()

T.debugger({ engine = engine, layer = layer })

Blocks the packet processing pipeline and drops you into a shell as shown below.

Trisul LUA [0x8fc750]> print(layer:layer bytes())

20

Trisul LUA [0x8fc750]> print(layer:rawbytes():hexdump())

00000000 00 16 Ob 94 cl €9 e6 b3 06 7c e0® ce 50 10 7f ff |..P...
00000010 07 85 00 00 00 OO GO OO OO 0O OO 0O O GO0 00 6O

Trisul LUA [0x8fc750]>

Parameters

T.debugger table A table containing symbols you want to export to the
debugger sandbox.
T.debugger({e = engine, | = layer}) will allow your to use

the symbols e and | in your debugger CLI

9/27
Trisul Network Analytics LUA API Ref v4.0

2.1.5 T.re2

Google REZ2 is a fast, threadsafe, and powerful Regex engine. Trisul exposes useful methods
that are most frequently used in matching and extracting info from headers in network
protocols.

1. T.re2 also allows you to employ very common string matching idioms like (octet-
stream |application-x | application-pdf)which arent available in Lua’s find method.

2. T.re2 allows you to precompile the regexes once and run them later

T.re2 string Are2 Precompile the regex string and return an re2
object object

A sample illustrating a typical use.

-- precompile in onload
onload = function()
my regex = T.re2("User-Agent\\s*:\\s*(.*)\r\n")
end
onflowattribute = function(...)
-- my regex is a precompiled re2 object, just compare
-- or extract from a target string

if my regex:partial match(a string) then

end

10/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/lua/ref.html#re2
http://trisul.org/docs/lua/ref.html#re2
https://code.google.com/p/re2/

2.16 T.ac

Multi-pattern matching is such a common use case for our purposes that we have provided a
minimal but fast Aho-Corasick multi pattern matcher.

T.ac|table (An array of An AC_ Load all the patterns into an AC matcher
patterns) object and return an AC matcher object

A sample illustrating a typical use.
onload = function()

-- add patterns in array and create a new AC matcher

ac headers = T.ac({ "Host:",
"User-Agent:",
"Referer",
"Server:",
"Content-Type:",
"Content-Length:"})

-- later on you can use the match methods

ac headers:match all(...)

11/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/lua/ref.html#ac
http://trisul.org/docs/lua/ref.html#ac
http://trisul.org/docs/lua/ref.html#ac

s Objects

The following objects are available. The objects are implemented as metatables in C, so in
order to call a function on an object use the following syntax.

object:method(..)

3.1.1 Engine

The Trisul stats engine.

Name In Out Description
update_counter guid, key, Updates a meter for a key with a
meter, val particular value
update_counter_bytes guid, key, Updates a meter for a key but with a
meter value of wire_length in the packet
add_alert guid, Add an alert GUID = an alert group
flowkey, flowkey = a flow id say from flowID:id
alertkey, alertkey = a SIGID
details details = a message
timestamp tv_sec and tv_usec/nsec. The latest
timestamp seen by the engine
add_flow_counter flowkey, number, |Add a flow counter. Automatically
guid, key, |number |counts the guid,meter.key tuple for
meter each subsequent packet in the flow
reset_flow_counter flowkey, Removes all flow counters, then does
guid, key, an add_flow_counter
meter
add_alert_full guid, Same as add alert with with a priority
flowkey. and classification to make it integrate
alertkey better with other IDS alerts.
class. Use the format sn-1 for priority 1
priority,
details
tag_flow flowkey, tag Tag a flow with a label. You can then
12/27

Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/lua/ref.html#flowid
http://trisul.org/docs/ref/guid.html#alert_groups

Name In Out Description
search for flows with that label The
labels should be SHORT < 10
characters to work will in the web Ul
3.1.2 Layer

Packet contents at a given protocol layer.

Name In Out Description
layer_bytes number |Number of bytes at this layer. Example: UDP layer has 8
bytes
protocol_id GUID |The GUID of the protocol
rawbytes A Raw bytes
Buffer
object
total_bytes number | Total number bytes in the packet, i.e. same as
Packet:wire_length()
packet A The full packet
Packet
object
testbit bitho | bool Test if a bit is set in this layer. Bits are numbered serially
from 0 to 8*layer_bytes-1 This is a shortcut
forlayer:rawbytes():hval_8(bitno/8)
You are encouraged to use testbit because it increases
performance by reducing Lua-C round trips.
getbyte offset |number |Get a byte at this offset. Shortcut for

layer:rawbytes():hval_8(offset)
You are encouraged to use getbyte because it increases
performance by reducing Lua-C round trips.

13/27

Trisul Network Analytics LUA API Ref v4.0

3.1.3 Packet

Represents a packet.

This contains layers such as Ethernet/IP/UDP etc.

Name In Out Description
timestamp number, |two numbers representing tv_secs and tv_usecs (or
number | nsecs)
rawbytes A Buffer |the full packet
object
wire_length number |packet length
capture_length number | number of bytes captured. Could be less than
wire_length due to a snaplen setting
num_layers number |number of layers
get_layer number |A Layer |get a layer by index
object Note: Index starts from 0..num_layers-1 ; unlike LUA
find_layer guid A Layer |get layer identified by the GUID
object
3.1.4 Buffer
Raw bytes.
Name In Out Description
size number |size of the buffer containing the raw bytes
hexdump | offset, size string | string with hexdump of the buffer in canonical format.
(both optional) Specify offset, size to dump a subset
hval_8 offset number |returns the byte at buffer+offset
hval_16 | offset number |same as ntohs() on the 2 bytes at buffer+offset
hval 24 | offset number | The 3 byte (24 bit) number at buffer_offset
hval_32 | offset number |same as ntohl() on the 4 bytes at buffer+offset
tostring | offset, size string |tostring() returns the full string to LUA
(both optional) tostring(offset,size) returns the substring of

Trisul Network Analytics LUA API Ref v4.0

14/27

Name In

Out Description

3.1.5 FlowID

Represents a flow.

size bytes starting and including offset

Name In | Out Description

id string | A unique string identifying the flow

protocol string | IP protocol, TCP/GRE/UDP/etc

ipa string | Trisul Key Format : IP Address of A-End can be IPv4 or IPv6

ipa_readable string | Human readable format : IP Address of A-End can be IPv4 or
IPv6

porta string | Trisul Key Format : port

porta_readable string | Human readable format : port number

ipz string | Trisul Key Format : IP Address of A-End can be IPv4 or IPv6

ipz_readable string | Human readable format : IP Address of A-End can be IPv4 or
IPv6

portz string | Trisul Key Format : port

portz_readable string | Human readable format : port number

netflow_router string | Netflow router ID

netflow_ifindex_in string | Netflow input ifindex

netflow_ifindex_out string |Netflow output ifindex

Trisul Network Analytics LUA API Ref v4.0

15/27

3.1.6 RE2
A precompiled regex created with T. re2(expression)

Name In Out Description
partial_match string |bool Does the regex match anywhere in the input
string
full_match string |bool Full input string must match the regex
partial_match_c1 string | bool, Match input string with 1 capture. If matched,
string return true + captured string Example

(Host.*)\\s*: will pull the match in
paranthesis into a string. If not matched,
return false, nil.

partial_match_c2 string |bool, Same as partial_match_c1 but extract TWO
string, captures rather than one.
string

More will be added as required. For RE2 syntax which is a bit different from PCRE visit the Google
Re2 page

16/27
Trisul Network Analytics LUA API Ref v4.0

http://code.google.com/p/re2/wiki/Syntax
http://code.google.com/p/re2/wiki/Syntax
http://trisul.org/docs/lua/ref.html#t.re2

3.1.7 AC

An Aho-Corasick multi pattern matcher created with T.ac(_pattern_array_)

Name In | Out Description

match_all |string |table |Matches all patterns. The matches are returned in a table
{ pattern_matched = position }
The position indicates the last matching character, not the first.

match_one|string |table | Same as match_all, but stops after finding a single match. Use
this method for alerting on pattern matches.

17/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/lua/ref.html#t.ac

2 Script types

The following types of LUA scripts are supported.

A single LUA file may contain multiple script types, or each script type could be in its own
LUA file.

Name Called When Notes
countergroup | During initialization Create a new counter group
simplecounter | Called for each packet Inspect packet contents and update

meter/alerts
flowmonitor Called when interesting Inspect HTTP headers, TLS certs, then
data is seen per flow attach counters to flows

We describe each type of script in detail in the sections below.

18/27
Trisul Network Analytics LUA API Ref v4.0

41 Counter Group

Creates a new counter group and associated meters.

> Requires a LUA table named countergroup

4.1.1 Table countergroup

The table countergroup has two sections called control and meters. The control section
describes the counter group and the meters section define the individual meters within the
group. The countergroup table typically looks like this.

countergroup = {

control = {

- id and parameters of new group

}

meters = {

- info about the various meters

}

keyinfo = {

- keys to label mappings

}

19/27
Trisul Network Analytics LUA API Ref v4.0

The countergroup > control table

The control table assigns a unique GUID to the counter group and attaches it to a particular
layer in the network protocol stack.

guid string | A unique guid that identifies the group. See section on GUIDs

name string |Name of the counter group. Keep it short < 15 chars

description |string

bucketsize 'number | Resolution of the counter group for all meters in seconds.

The countergroup > meters table

Every counter group can house upto 16 different meters. This section defines each of them.

The meters section is an “array of arrays”, or in the LUA world, a “table of tables”. The typical
format is the following

meters = {

{ 0, T.K.vartype.RATE COUNTER, 10, "Bytes", "bytes" , "B" 1},

{ 1, T.K.vartype.COUNTER, 10, "Packets", "packets", "Pkts" },
}

Each meter line defines the following

0 Meter ID must start from 0

1 Vartype type type of meter, see the global named T.k.vartype

2 Top counter how many toppers do you want to track for the this meter
3 Name Meter name (keep it short < 10 charts)

4 Description what does it track

5 Units Suffix for units, must be compatible with K, M, G for Kilo, Mega, Giga etc

20/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/lua/ref.html#top_level_methods

The countergroup > keyinfo table

Each entity being monitored in a counter group is identified by a key string. You are
responsible for creating these key strings. The keyinfotable maps these keystrings into user
friendly display labels. The web Ul shows these labels instead of the raw keys.

Format
The keyinfo “table” is an array of { key, label }
key string

label string

keyinfo={
{"14/00", "change cipher spec"},
{"15/00","alert"},

{"16/00","hello request"},

21/27
Trisul Network Analytics LUA API Ref v4.0

42 Simple Counter

Inspect each packet to create your own metering and alerting logic.

4.2.1 Table simplecounter

The simplecounter table attaches the onpacket(..) function to a particular protocol layer. The
two attributes of the table are:

protocol_guid | string Which protocol do you want to attach this group to?
Trisul will invoke this counter group only for packets
where that protocol is present and with a pointer to the
payload at that protocol

A list of common protocol GUIDs are here

onpacket function onpacket (. .) is the main function where your LUA code
goes. It is called for each packet with a layer object
corresponding to the protocol_guid above

A typical simplecounter table looks like the following
simplecounter={
protocol guid = "{0A2C724B-5B9F-4ba6-9C97-B05080558574}",
onpacket = function(engine, layer) {

- your lua code goes here

22/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/ref/guid.html#protocols

4.2.2 The simplecounter > onpacket function

The onpacket function is where your LUA code goes. You can inspect the packet bytes, then
apply your own logic and interact with the Trisul engine.

‘engine ‘An Engine object that allows you to interact with Trisul ‘
‘Iayer ‘A Layer object pointing to the protocol guid you have specified ‘

The layer parameter

This code dumps the IP header and the size of the IP layer. Once again the GUID
“{0A2C724B-5B9F-4ba6-9C97-B05080558574}” represents the 1Pv4 protocol

simplecounter = {
protocol guid = "{0A2C724B-5B9F-4ba6-9C97-B05080558574}",
onpacket = function(engine, layer)
print("onpacket now.. layer length = "..layer:layer bytes())
print ("Hexdump\n")
local bytes = layer:rawbytes()
print(bytes:hexdump())
end,

}

23/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/ref/guid.html#protocols

The above snippet works as follows
- print the IP layer length via layer:layer bytes() See Layer
« dump the 20 byte IP header using layer: rawbytes () :hexdump()

onpacket now.. layer length = 20
Hexdump
00000000 45 00 00 28 a3 c8 40 00 35 06 15 4a dl d8 f9 3a E..(..@.5..3...:

00000010 cO a8 01 02 00 00 00 GO 00 00 GO0 00 00 60 00 0

The engine parameter

Typically the end result of your LUA processing will result in a call to one of the Engine
methods. Check out the samples for how they are used.

24/27
Trisul Network Analytics LUA API Ref v4.0

http://trisul.org/docs/lua/ref.html#engine

4.3 Flow Monitor

Attach counters to flows based on content.

4.3.1 Table flowmonitor

The table contains a single function called onflowattribute The function is passed the
following parameters

engine An Engine object

flow A Flow ID object

timestamp a timestamp in epoch_secs

attribute_name See below

attribute_value Value of the said attribute. It is a Buffer object

Essentially, the way flow monitors work are as follows.

1. Trisul extracts bits of information from flows called “flow attributes”

2. Examples of flow attributes are HTTP headers, URLs, Content Types TLS Certificates,
TLS organizations, handshake records, etc

3. You can observe these flow attributes and attach a counter to the flow

4. When you attach a counter to a flow, all packets in that flow are automatically counted
without calling your LUA plugin for every packet

25/27
Trisul Network Analytics LUA API Ref v4.0

List of supported flow attributes

The flow attributes currently supported are

String

Description

A blank (empty string “”) attribute type and value is
sent whenever a new flow is started, you can use
the Flow IDmethods to get the flow details

D

A “AD” (caret followed by capital D) A flow has
terminated or timeout.

HTTP-Header

Complete HTTP header both requests and
responses

Trisul Network Analytics LUA API Ref v4.0

URI Complete URL including query params
Content-Type Just the Content-Type found in HTTP responses
User-Agent From the HTTP Header
Host From the HTTP Header
TLS:RECORD The full TLSrecord.
All TLS Content_types except application_data (23)
are sent down to LUA
TLS:O TLS organization , ie subject found in a certificate
TLS:CA:ROQOT TLS Root CA
TLS:CA:INTER TLS Intermediate CA names
TLS:CIPHER TLS Ciphersuites
more will be added coming up..
26/27

4.3.2 Function flowmonitor > onflowattribute

The function onflowattribute is designed like a filter. It is called for ALL flow attributes, even
those you may not be interested in. You have to use a if attribute_name == ".." construct to
filter out noise you are not interested in.

Lets say you only want to deal with HTTP-Header- you would do something like below

flowmonitor = {

onflowattribute =
function(engine, flow,timestamp,attribute name,attribute value)

if attribute name == "HTTP-Header" then

-- do your thing here

local hdr = attribute value:tostring()

end

end

If you're keeping track of some state information per flow, you can use the "~D" message
to cleanup.

27/27
Trisul Network Analytics LUA API Ref v4.0

	1 Introduction
	1.1 LUA version
	1.2 Installing Lua scripts and error handling
	1.2.1 Loading and error handling

	1.3 Basic structure of a LUA script
	1.4 On GUIDs
	1.5 Top level functions onload() and onunload()
	1.6 The ID Block

	2 Globals T
	2.1.1 T.host methods
	2.1.2 T.K methods
	T.K.vartype

	2.1.3 T.util methods
	2.1.4 T.debugger
	2.1.5 T.re2
	2.1.6 T.ac

	3 Objects
	3.1.1 Engine
	3.1.2 Layer
	3.1.3 Packet
	3.1.4 Buffer
	3.1.5 FlowID
	3.1.6 RE2
	3.1.7 AC

	4 Script types
	4.1 Counter Group
	4.1.1 Table countergroup
	The countergroup > control table
	The countergroup > meters table
	The countergroup > keyinfo table
	Format

	4.2 Simple Counter
	4.2.1 Table simplecounter
	4.2.2 The simplecounter > onpacket function
	The layer parameter
	The engine parameter

	4.3 Flow Monitor
	4.3.1 Table flowmonitor
	List of supported flow attributes

	4.3.2 Function flowmonitor > onflowattribute

